3.4.43 \(\int (b \cos (c+d x))^{2/3} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [343]

Optimal. Leaf size=145 \[ \frac {3 A b^2 \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}+\frac {3 b B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right ) \sin (c+d x)}{d \sqrt [3]{b \cos (c+d x)} \sqrt {\sin ^2(c+d x)}}-\frac {3 (A+4 C) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sin (c+d x)}{8 d \sqrt {\sin ^2(c+d x)}} \]

[Out]

3/4*A*b^2*sin(d*x+c)/d/(b*cos(d*x+c))^(4/3)+3*b*B*hypergeom([-1/6, 1/2],[5/6],cos(d*x+c)^2)*sin(d*x+c)/d/(b*co
s(d*x+c))^(1/3)/(sin(d*x+c)^2)^(1/2)-3/8*(A+4*C)*(b*cos(d*x+c))^(2/3)*hypergeom([1/3, 1/2],[4/3],cos(d*x+c)^2)
*sin(d*x+c)/d/(sin(d*x+c)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {16, 3100, 2827, 2722} \begin {gather*} \frac {3 A b^2 \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}-\frac {3 (A+4 C) \sin (c+d x) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right )}{8 d \sqrt {\sin ^2(c+d x)}}+\frac {3 b B \sin (c+d x) \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right )}{d \sqrt {\sin ^2(c+d x)} \sqrt [3]{b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^(2/3)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(3*A*b^2*Sin[c + d*x])/(4*d*(b*Cos[c + d*x])^(4/3)) + (3*b*B*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c + d*x]^2]
*Sin[c + d*x])/(d*(b*Cos[c + d*x])^(1/3)*Sqrt[Sin[c + d*x]^2]) - (3*(A + 4*C)*(b*Cos[c + d*x])^(2/3)*Hypergeom
etric2F1[1/3, 1/2, 4/3, Cos[c + d*x]^2]*Sin[c + d*x])/(8*d*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int (b \cos (c+d x))^{2/3} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx &=b^3 \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/3}} \, dx\\ &=\frac {3 A b^2 \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}+\frac {3}{4} \int \frac {\frac {4 b^2 B}{3}+\frac {1}{3} b^2 (A+4 C) \cos (c+d x)}{(b \cos (c+d x))^{4/3}} \, dx\\ &=\frac {3 A b^2 \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}+\left (b^2 B\right ) \int \frac {1}{(b \cos (c+d x))^{4/3}} \, dx+\frac {1}{4} (b (A+4 C)) \int \frac {1}{\sqrt [3]{b \cos (c+d x)}} \, dx\\ &=\frac {3 A b^2 \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}+\frac {3 b B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right ) \sin (c+d x)}{d \sqrt [3]{b \cos (c+d x)} \sqrt {\sin ^2(c+d x)}}-\frac {3 (A+4 C) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sin (c+d x)}{8 d \sqrt {\sin ^2(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 123, normalized size = 0.85 \begin {gather*} -\frac {3 (b \cos (c+d x))^{2/3} \csc (c+d x) \left (-A \, _2F_1\left (-\frac {2}{3},\frac {1}{2};\frac {1}{3};\cos ^2(c+d x)\right )+2 \cos (c+d x) \left (-2 B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right )+C \cos (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right )\right )\right ) \sec ^2(c+d x) \sqrt {\sin ^2(c+d x)}}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^(2/3)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(-3*(b*Cos[c + d*x])^(2/3)*Csc[c + d*x]*(-(A*Hypergeometric2F1[-2/3, 1/2, 1/3, Cos[c + d*x]^2]) + 2*Cos[c + d*
x]*(-2*B*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c + d*x]^2] + C*Cos[c + d*x]*Hypergeometric2F1[1/3, 1/2, 4/3, C
os[c + d*x]^2]))*Sec[c + d*x]^2*Sqrt[Sin[c + d*x]^2])/(4*d)

________________________________________________________________________________________

Maple [F]
time = 0.28, size = 0, normalized size = 0.00 \[\int \left (b \cos \left (d x +c \right )\right )^{\frac {2}{3}} \left (A +B \cos \left (d x +c \right )+C \left (\cos ^{2}\left (d x +c \right )\right )\right ) \left (\sec ^{3}\left (d x +c \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)

[Out]

int((b*cos(d*x+c))^(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)^3, x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(2/3)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{2/3}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(2/3)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^3,x)

[Out]

int(((b*cos(c + d*x))^(2/3)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^3, x)

________________________________________________________________________________________